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A scheme for the automatic calculation of rates for parametric instabilities has been 
devised and has been implemented using the MACSYMA system. A survey of decay rates 
for modes propagating in warm fluid magnetoplasmas has begun. In this paper we discuss 
the method and some techniques for its implementation. The mathematical formalism 
used for the calculations permits a uniform treatment of these instabilities and it relies 
heavily on the structure of the linear modes that are coupled by the pump fields. Most of 
the information on these modes is generated automatically. The algorithms developed for 
determination of the linear modes are potentially useful for other calculations in plasma 
physics. An essential feature of the method is the automatic retention of only leading terms 
in expressions. In this regard the calculation by machine is done in humanlike fashion. 

1. INTRODUCTION 

We present a scheme for the automatic derivation of the analytic form of the growth 
rates and the frequency shifts of parametric instabilities [f-3] and its partial imple- 
mentation. The method for calculating decay instability rates does not rely in an 
essential fashion on the breakup of fields into slow and fast modes; the decay rate 
for an electromagnetic mode going to two plasmons is calculated by the same proce- 
dure used for the decay of a lower hybrid wave into two other lower hybrid waves. 
We have implemented our algorithm for the calculation of decay instabilities occurring 
in a warm fluid magnetoplasma. The MACSYMA [4] system has been used for this 
purpose. The ultimate goal of this work is the production of a systematic survey 
of parametric decays and instabilities. The extension of the method presented here 
to Vlasov theory is in progress. 
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In the next section we present the formalism used in the calculations. As will be 
seen the essential step for the calculation of parametric instabilities is the determi- 
nation of mode-coupling coefficients. The essential difference, from the mathematical 
point of view, between decay instabilities and the more involved parametric processes 
such as an oscillating two-stream instability, is the number of modes involved. (By 
modes we mean the modes of the linearized system that are coupled together by pump 
fields.) As can be seen already from Ref. 1 the coupling coefficients involved in the 
oscillating two-stream case can be calculated by the same method as is used for the 
decay instability; it is the dispersion relation that is different in the two cases. 

The calculations are done by using the leading term(s) of rather large expressions. 
Complete cancellations between leading terms can result in a false null answer. We 
calculate the next surviving germ where possible or else mark the results with an 
indication of possible error. 

The longest part of the calculation is the determination of the mode structures of 
the waves participating in the instabilities. We have developed an algorithm for finding 
approximate analytic solutions for the sixth-order (in w2, w = angular frequency) 
dispersion relation for the linear modes in a warm fluid magnetoplasma. The polari- 
zations of the modes are determined by a combination of machine and human cal- 
culations. The codes developed for determining linear modes thus have potential 
usefulness for other problems in plasma physics, 

In Section 2 we present the mathematical formalism used for the derivation of 
couplings and dispersion relations and in Section 3 we apply the formalism, as an 
illustration, to the model used by Nishikawa in Ref. 2. In Section 4 we present a 
step-by-step outline of the computation and in Section 5 we present details on some 
of the techniques used by us to solve the dispersion relation and to keep only leading 
terms in our results. Finally, in Section 6 we briefly summarize the cases worked out 
to date. 

Allied work on symbolic computation of nonlinear couplings has been reported 
by Bers et al. [5]. The work presented here is complementary to theirs in that they 
place special emphasis on symmetry properties of the couplings and with the specific 
origin of various terms (box technique). 

2. MATHEMATICAL FORMULATION 

In this section we present the analytical basis of the automated calculations. As 
are most other calculations of these instabilities ours are limited to effects quadratic 
in the pump amplitude. Our discussion is based upon the use of a particular fluid 
model but the reader will see that the method is more generally applicable. 

We start with the dynamic Maxwell equations (Faraday’s law, Ampere-Maxwell 
law), the equations of continuity for electrons and ions, and the equations of motion 
for the electrons and ion fluids which are imbedded in a uniform static magnetic field. 
The electron fluid has a finite temperature; the ions are cold. 

In this model there are 14 equations, each first order in time. There are, however, 
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two time-independent integrals of the motion. We eliminate the ion density using 
Poisson’s equation and one component of the magnetic field using the fact that the 
divergence of this field is zero; we then have 12 equations forfield amplitudes. 

The usual assumptions that all dynamic variables have a large “pump” part 
(which contains the frequencies 152) and a small “signal” or “disturbance part 
(containing frequencies w, o i QO) lead us to equations that have the structure 

(I) 

where the F’s are multicimponent vectors of Fourier-analyzed field amplitudes of 
dimension m (= 12 in our case) and the M’s and N’s are m x m dimensional. In 
the absence of the pump the N matrices would vanish. The M’s are given by the linear 
theory of plasma oscillations; the eigenvalues of M (multiplied by i) are the possible 
frequencies of the linear modes. We have truncated our equations by using the assump- 
tions that the field amplitudes at w i &$, , n > 1 are negligible. 

Using the first and last m rows of Eq. (1) we can eliminate F+ and F- from the central 
rows and thus obtain 

(--id - M)F” = ZFO; 

X = NO+(--i(w + ii),) 1 - M+) Nf” + NO-(--i@ - Qo) 1 - M-)-l N-O. 
(2) 

Next we introduce normalized left and right eigenvectors of the M matrices, (I, 
and r,, , respectively, p = 1, 2 ,..., m) and obtain our basic result for the mode ampli- 
tudes at w: 

where 
MOL ,O = a -& 0, 0 a a 
1”OM“ = -&O,O 01 a a 

and where SO0 2 8, * So, p = 01, fl, are mode amplitudes. 
In practice the calculation of the matrix C is relatively simple since there are usually 

one or two high-frequency modes, i.e., those at w + Q. and w - Sz, . Without loss 
of generality we can write 

N”*(--i(w f i-2,) 1 - M*)-l N-to 

= il No* . aM*Lui . Nio 
-i(w f sz, - sz,*t) ’ 

where rllf and I,* are the eigenvectors of 44% and sZ,i are the corresponding eigen- 
values. The sum on p goes over all modes but in our applications there is only one 
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value of p for which w f 9, - sZ,* is small. In other words, for the fields at the 
fraquencies w * Q, we can use the resonance approximation. 

We will now apply this result to calculate rates for the various species of parametric 
instabilities. 

2.1. DecaJJ Instability 

The pump wave is assumed to decay in one side band (at w t Sz, , say) and into 
the wave at w Eq. (3) becomes 

- j(w - J-),0) 9-0 z (/a” . No+ . ,,,+)(Lw+ . N+O . #ao) Fao 
-i(w + 52, - Q;:-) . 

(We assume for convience that the real parts of o and J&O are negative.) If we define 
the frequency mismatch d,, by 

and the coupling coefficient v~‘,~v,‘,~ by 

we obtain 

+ If A,+, is zero, then (v~,v,,~ )lj2 is the growth rate of the instability. Equation (6) is a 
general formula for those instability decay rates for which our assumptions are valid. 

2.2. Instabilities Involving Low-Frequency Modes 

If the frequency sZ,O is low and/or the pump is sufficiently strong, then the fields 
at the frequency w may not be that of one given linear mode but will be a super- 
position of such modes. Assume then that the modes FE and I;_, are excited along 
with the side bands at sZ,+ and 1;2,- (whose real parts are nearly equal in magnitude 
but of opposite sign). Equation (2) implies that 

Using the resonance approximation for the high frequencies, one finds 

I V 
+ + 

-i(w - L&O) .9y = smo 
WVU*t2 v;,wv;,cT 

-i(w + 52, - sz,+) + -i(w - Q. - .n,-) 1 

and a similar equation with 0~ and ----a: interchanged. 
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The dispersion relation is given by the 2 x 2 determinant of Eq. (7) and, if we ignore 
terms quartic in the Y’S, is 

The terms we have ignored in deriving Eq. (8) from Eq. (7) are 

and one would like to justify this neglect. This may be done by arguing that since the 
theory is valid only for relatively weak pump fields, the term quartic in the V’S are 
negligible compared to those quadratic in the v’s. Up to this point we have made 
two essential approximations (other than the fluid approximation), viz.: 

(1) truncation of terms involving fields at frequencies w $ nS2, , II 3 2; 

(2) The pump fields are of constant amplitude and frequency; in other words 
pump depletion is ignored. 

Neither of these assumptions is based exclusively on the small size of the pump 
fields and coupling coefficients. The fiirst assumption is usually based on the fact 
that the plasma has a small response at these higher frequencies; the second can be 
justified by assuming that the theory holds only while the signal fields are quite small. 

There is another basis for ignoring these terms. In most couplings to low-frequency 
modes the coupling is either to the low-frequency density fluctuation or to E x B 
drift of electrons. If this is so and if the two modes we have designated by CFO and 35, 
have the same wave vector but opposite frequencies, then the components of the 
eigenvectors (L, , aha) that figure significantly in the coupling are the same for both 
frequencies (&52,O). For these cases the terms we have ignored vanish identically. 
In the next section, in which apply our formalism to the Nishikawa [2] model, the terms 
do cancel exactly. 

The various N matrices, which specify the nonlinear couplings between fields, are 
not all independent. Each of them depend on two (wave number, frequency) variables 
and a pump field amplitude. which we denote here by E. We can write 

No-l = N((k, w), (k+, w+), E(-k, , -fi,)), 

No- = NW w), (k-7 w-1, -Wo , Q,>>, 

N-O = NW, w-1, (k, ~1, EC--k, , --szo)), 
N+O = N((k’, co’), (k, w), E(ko , Q,)), 

where kh = k f k 09 C& = w & L?,, . Similarly we can give a general form for mode 
coupling coefficients vi;: where 

i,j 
VW., = l&f . Ni.i . 2,j. 
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This form is 

V 
i,i n,ir == /,yki, i&i) . N((ki, d), (kj, wj), E(ki - kj, wi - 09)) . huj(kj, i&i). (9) 

Here i and j take on the values + and 0 while 01 and TV range through the number of 
modes. There are some obvious symmetries which can be exploited to facilitate 
the calculations. 

3. ILLUSTRATION OF THE MATHEMATICAL FORMALISM 

The formulation presented in the last section was developed in order to have a 
uniform approach to these calculations; such uniformity is almost essential for auto- 
matic calculations. In this section we present the model of Nishikawa [2] in our 
notation. This mode1 consists of two oscillators, one high frequency and one low 
frequency which are coupled by a pump through their displacements. The resonance 
approximation is not always valid for the low-frequency modes and so both low- 
frequency modes are needed to describe the system. Thinking of the two oscillators 
as representing two modes of one system we write their model in our notation, i.e., 
in the form of Eq. (l), with the following identifications: 

F = ($7 cix 
bdt’ 

&f+ zzz 
0 

-wff2- r2 
MO = ( O '), 

-wL2 - y2 0 

N-0 = NO+ = j-,l+O* = 

The quantity n represents the “pump” strength. The eigenvalues of the A4 matrices 
are 

M: -i~,” = -iwL - y, 

-iJ?,O = iw, - y; 

M*: -iQ,* = -iw, - r, 

-iL?,* = iw, - .lT 

Ifw, + WL * Sz, , then for F-, which satisfies 

-i(w - Go) F- = M-F- + N-OF”, 

the eigenvalue Q,- holds for the nearly resonant mode, while the eigenvalue Q,+ 
corresponds to the nearly resonant parts of F+. (Recall that I w / 5 wL .) 
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If we denote any pair of the eigenvalues above as h, and h, , then the corresponding 
left and right eigenvectors are, respectively, 

t1 = Cl@, ) - I); 1 p1 =z Cl 
i 1 Al ’ 

t2 = c,(h, ) -1); 
1 

)2 = c2 A2 3 ( i 

cl =I (A, -Ih,)li2 ; c2 == (A, &" . 

Straightforward calculation yields the .Z matrix (defined in Eq. (2)) as 

where 

B = c;, 1 
-i(w + (12” - WH)) + r + e -i(W - (Q- W*)) -1-f. 

Equation (7), which describes the coupling between the two F” modes, becomes 

Similarly 

(-i(w - WL) + y) .q = nn*B(c~?~o + c,0c20.~0). 

(-i(w - wL) + y) S20 = nn*B(~,~c,~.F~~ t c22R20) 

Finally, we obtain the dispersion relation 

WL 2 - (W + iy)’ + nn*B = 0 

which agrees with that found by Nishikawa. 

4. AUTOMATION OF THE CALCULATIONS 

Our calculations consist of two disparate types. One is the generation of the coupled 
fleld equations (Eq. (1)) and the second is the calculation of mode-mode-coupling 
coefficients, the V’S defined in Eq. (9). 

The first part starts with the appropriate equations for the plasma model (fluid, 
guiding-center fluid), and the electromagnetic fields and produces the M matrices 
(the linear part) and the N matrices (the parametric coupling portion) introduced in 
Eq. (1). The algorithm used for the determination of the field-coupling matrices 
is based upon previous work of one of the authors [6] and has been implemented 
in MACSYMA. Consequently, we will concern ourselves here mostly with the second 
half of the calculations. It should be noted that this first part need be done only once 
for a given model. 
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There is an intermediate step required between the calculation of field couplings 
and of mode couplings; this is the determination of the general form of left and right 
eigenvectors of the matrix M and also the determinant of M. The vectors are generated 
by use of Cramer’s rule; the components of velocity and density are expressed 
of unspecified components of the electric field. Consequently, the polarization of the 
electric field of each mode involved in a given parametric process is part of the input 
to the program that calculates the process rate. As the reader is no doubt aware, 
Cramer’s rule gives the solution of a set of linear equations as the ratio of two deter- 
minants; the eigenvector components we use are all multiplied by the determinant 
that would be in the denominator. Thus, we completely eliminate nontrivial denomi- 
nators in our eigenvectors; this proves very useful in keeping only the leading terms 
of a sum since each term contains no factor which is itself a sum. This step also has 
to be carried out Once for a given model. 

As a result of these previous steps disk files containing the N matrices, the deter- 
minant of M (linear dispersion relation) and the unnormalized eigenvectors of M 
have been established. In order to determine a given coupling, say 

(Fe0 . No' . ,,+)(P,- . N+O . >,O), 

one would “merely” have to carry out the multiplication of the N matrices by the 
indicated eigenvectors. In our case we use unnormalized eigenvectors and hence must 
multiply by the appropriate normalization factors. Finally, to put the result in more 
standard form one should express the pump density magnetic and velocity fields 
in terms of the pump electric field. In essence we do just that but with an important 
difference; only the terms of leading order are kept. Not only does this make the cal- 
culation more efficient, both in terms of time and computer memory required, but 
also gives an answer that is a comprehensible and as nearly compact as one that 
would be given by ordinary calculation. 

The orderings used are determined from the linear theory of plasma waves [7, 81, 
which predicts that plasma behavior is governed by the value of various dimensionless 
parameters. For the warm fluid model the parameters for the plasma can be taken as 
the mass ratio of electrons to ions, the ratio of electron cyclotron frequency to electron 
plasma frequency, and the ratio of the average thermal energy per electron to the 
rest mass energy per electron. Furthermore, the wave numbers specified by its magni- 
tude (in units of (speed of light)/(electron plasma frequency)) and direction relative 
to the magnetic field determines, upon solution of the dispersion relation, the 
frequencies (measured in units of the electron plasma frequency) of the linear modes. 
Selection of any particular mode, i.e., choice of one of these possible frequencies, 
then provides almost all the information necessary for the determination of the leading 
term(s) of each component of the eigenvectors of that mode. The additional pieces 
of information are the relative magnitudes of the electric field components 
(polarization). 

The second part of our calculation, the determination of mode-mode-coupling 
coefficients, proceeds as follows: 
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(1) The parameters of the plasma as a whole are specified. 

(2) For each mode, and for the pump wave, the wave number and its component 
parallel to the magnetic field are specified. Approximate analytic solutions of the 
dispersion relation are obtained by a subroutine called ROOTS which we describe in 
the next section. A frequency is selected and polarization information is supplied. 

(3) In an optional step, under user control; information on the relative size 
of terms in Ampere’s law and Poisson’s equation is presented. These can be used to 
determine polarization if it has not been done in step (2). 
(The next four steps are usually performed without user participation). 

(4) The left and right eigenvector components of each mode are calculated to 
the leading order in each term. If leading terms cancel, care is taken in this step to 
obtain the next largest terms. 

(5) The electron density, electron velocity, ion velocity, and electric and 
magnetic fields of the pump wave are determined, to leading order, in terms of one 
specified component of the electric field, say, one component perpendicular to the 
static magnetic field. 

(6) These pump components are substituted into the coupling matrices, the 
N’s, and again only the leading terms of each element of the coupling matrix is 
retained. No checking is done here to see if leading terms cancel; this point needs 
some attention. 

(7) The various matrix-vector multiplications are now performed, and once 
again the leading terms are kept. In this step one checks to see if the result is as large 
as expected, i.e., that the leading terms have not completely cancelled out. If they have 
the calculation must be designated as invalid. Unlike the situation in step (4) the 
present case is one that involves only part of subdominant expressions and the 
surviving terms are possibly incomplete. 

An entire calculation of the v,,~v~,~ involved in a parametric decay (see Eq. (5)) 
not including step (3) but including some factoring and compactification of the final 
expression and its “translation” into commonly used symbols usually takes 2-3 min 
of computer time. The process of factoring is not to be taken as trivial; it can often 
take as long as half the time of the rest of the calculation. 

Our methods to obtain leading terms of expressions are discussed in the next 
section. 

5. TECHNIQUES 

In this section we will present a brief discussion of the techniques used to determine 
and to keep the leading terms of expressions and of the algorithm for the analytic 
soution of the sixth order dispersion relation. 
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5.1. Leading Term Calculations 

In the following we assume an expression depends on parameters, Pi , i = 1, 2,..., n, 
multiplicatively. Each parameter in turn is of order of magnitude cm*, where c N I/IO. 

There are three different cicrumstances in whcih we reduce expressions to their 
leading terms; we present our method for handling each case in turn. 

(1). The quantity to be computed is a sum of terms each of which has already 
been computed in a previous step. Examples of such quantities are the coefficients 
of the dispersion relation polynomial and the components of the eigenvectors. For 
each term, which is proportional to n: P:i, where 01~ are some integers, the 
quantity x oliPi has also been previously calculated. The cyi can be different for 
each term. For a given ordering, i.e., by assuming each Pi N Pi, the term con- 
sidered above is seen to be of order EQ, where 

Determining the Q for each term is thus a matter of simple arithmetic and one need 
only accumulate the terms which possess the lowest value of Q in order to obtain the 
leading terms. If the sum of such terms is zero, one must then accumulate the terms 
corresponding to the higher value of Q and so on. We go through four tries before 
permitting the result to be zero. 

(2). The quantities to be computed have been formed during the computations 
of coupling coefficients may contain denominators that are functions of the para- 
meters, Pi . Typical of such quantities are the components of the N matrices (see 
Eq. (1)) after the substitution of various pump variables by their values in terms of 
one component of the pump electric field. (See steps (5) and (6) in Section 4). In this 
case we separately determine, for each term, the lowest power of E in the numerator 
and the denominator and then, finally, the leading term(s) of the entire expression. 

(3) The quantities in question are to be formed by multiplication of previously 
computed quantities whose order in E are known and sums of the products of such 
quantities are then in turn to be formed (for example the matrix-vector and scalar 
products discussed in Section 4, step (7)). In this case we can determine in advance 
which terms are potentially of lowest order and need only calculate the sum of these. 
If the final result is zero, then the calculation of the quantity is deficient and the 
program gives a warning. 

5.2. Analytic Solution of Dspersion Relation 

In the limits of infinite ion mass the fluid plasma would have three nonzero modes 
of oscillation (here we count both fw parts as one mode), two electromagnetic modes 
and one electrostatic mode. The sixth-order polynomial in w2 would have three zero 
frequency modes [9, IO]. (Naturally, in the presence of a static magnetic field, there 
can be hybridization of these modes). 

In the case of large but finite ion to electron mass ratio there should be three low- 
frequency roots. We present a way in which the low-frequency roots can be separated 

SSI/3d2-7 
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off and the order of the polynomial successively reduced until analytic approxi- 
mations can be found for all or most of the roots. 

Recall that if the dispersion relation could be factored, one would find it to have 
the form (no losses) 

D(o) = j-J (w” - OF) 
= 2 (d)nr a,, = 0, 

where the wi2 are the roots and that the coefficient of (m2)‘+ in D(w) is the sum of 
the products of -wi2 taken m at a time. Suppose then that there is a root, oN2, 
whose order of magnitude is smaller than that of any other root. The constant term, 
a, , in D(w) is I$‘=, (-wi2) but the leading term in a, would be that product of (m - 1) 
factors that did not contain -wN2. Consequently, 

In other words the root occurs when the last two terms in D(w) nearly balance. By 
applying this reasoning to the remaining small roots we can determine them as being 
approximately equal to the ratio of adjacent coefficients in D(w). There is a compli- 
cation caused by the presence of two small roots of equal magnitude. In this case one 
sees that the roots occur when three adjacent terms in D(w) nearly balance; the two 
roots are obtained by solving a quadratic equation. This is easily generalized to the 
case of three or four such roots. 

If the wavenumber is large (in our units), then some of the roots vary as k2 and are 
consequently large. In this case we apply the same technique but start with the coeffi- 
cients of the highest powers of w2. In the case of one root much larger than the others, 
say, w12, uNPl m --w12 and since aN = 1, wr2 w -a&&N. Another way to come 
to the same result is to consider l/~~~D(u) as a polynomial in l/w2. In this variant 
of the preceding method we separate out the high-frequency waves. 

6. SUMMARY 

We have presented a scheme for the automatic computation of mode-mode 
couplings in parametric processes to lowest surviving order and have presented 
details of its implementation. 

To date we have been concerned principally with the correctness of the calculations 
and the efficiency of the computation. Our test calculations, which verify results 
obtained previously [l I] have been (no losses included) 

(1) Raman scattering (No static magnetic field), 
(2) Brillouin scattering (no static magnetic field), 
(3) electromagnetic decay into two plasmons (no static magnetic field), 
(4) lower hybrid decay into lower hybrid + ion acoustic wave, 
(5) lower hybrid decay into two lower hybrids waves, 
(6) magnetic pumping producing ion acoustic wave and fast Alfven wave. 
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In this last case the pump fields (Bpump ij Bstatic) were specified by the user rather 
than determined as a solution of the field equations; this is an option available in 
our system. 

In all these cases we did not include losses explicitly; losses can be included in an 
ad hoc fashion by giving the eigenfrequencies (Q*, LP) imaginary parts. On the other 
hand we do not use the dipole approximation explicitly: the method of calculation 
may cause terms proportional to k, to be dropped if the pump has a long wavelength. 

In the future we intend to extend the methods presented here to include losses, 
inhomogeneities, and kinetic effects. 
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